BREAKDOWN OF A MONOCHROMATIC WAVE
IN A MEDIUM WITH AN INERTIA-FREE NONLINEARITY
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The nonlinear instability mode of a monochromatic wave in a mediumwithan inertia-freenon-
linearity is analyzed theoretically and simulated numerically. Itisshownthat, if longitudinal
and transverse instabilities occur simultaneously, the wave is splitinto three-dimensional clus-
ters containing amplitude singularities. As aresult, the monochromatic wave "breaks down,"
which is accompanied by a considerable widening of its spectrum and angular divergence.

1. In certain experiments with self-focusing of light [1, 2, 3] one has observed a considerable widen-
ing of the originally very narrow spectral line. The purpose of the present study is to explore the mecha-
nism by which the spectrum is widened, specifically in a medium with an inertia-free nonlinearity. Such a
mechanism could be the simultaneous buildup of longitudinal and transverse instability in the light wave [4,
5, 6], followed by a split of the wave into three-dimensional clusters which "collapse" within a finite time.
This phenomenon may be called the breakdown of a monochromatic wave. The phenomenon is associated
not only with light, and it may also be observed in other nonlinear dispersive media; forthis reasonit seems

worthwhile to analyze it from a general point of view,

2. We consider an isotropic nonlinear medium, When the medium is slightly nonlinear, a monochro-
matic wave

@ (r, &) = g cos (0t —kz), © = 0r+ g

can travel through it. Here ) represents the mode of wave dispersion, and g characterizes the nonlinear-
ity of the medium.

We now consider a nearly monochromatic wave and denote its complex envelope by 3
@ (r,t)=Re [ (r,t)exp (— it + ikr)]
This envelope satisfies the eqﬁation [5, 6, 7, 8, 9]

(R, ) B e e =gy 2.1)
Here V, is the group velocity.
For a monochromatic wave we have
b = @ exp (—ig | 9, [*) (2.2)
In an inertia-free dielectric with a scalar nonlinearity mechanism and with the refractive index
n = ny (0) + Ony |E |?

Eq. (2.1) holds true at any elliptical polarization of the wave [10]. Moreover,

» 1 d?(ono) Ve Ony C

O = — Ve der 1T E nmp ' *T (o),
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Linearizing Eq. (2.1) with respect to the solution (2.2) and assuming a perturbation 8%

& ~ exp (—ig| @, [* £) — iQt + ipr
we obtain

/ ” 14
Q:V*pziv qlipolz(mkpzz‘l_ *

e pi® )+ (onpt A+ L

2
P p_LZ) (2'3)
If >0 and wi" >0, then the monochromatic wave is stable; otherwise, instability will occur, If q<0,
there occurs a transverse instability, and self-focusing of the wave results. If at the same time ¢y" >0,
then there occurs also a longitudinal instability. Only the latter case will be considered further.

We note, in addition, that Eq. (2.1) contains the invariants

Jy= SI‘P [*dr
17 ap 2, V,
ho=p\oe |G+ Tvrral v e

pr =0V — g7y ar @.4)
. al 3 o

p. = o\ (v 5% —p G ) ar

3. After changing to dimensionless variables
;o Vv 2
T=Vkt, r,=kr, 2= k( Icm;:”) (z— V)
o ja) vk
wo= ( 2%V, )
we have the equation
2% Lyutlupe=0 @)

with the integrals of motion

I, = S[u[ﬁdr
L= {(Vup = upr

S = iS(u*Vu — uVu*)de
Here V is the three~-dimensional Laplace operator in the variables r), z!'.

We will restrict the analysis to the spherical symmetry case, Then

1.6 49
A=mmr%
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We introduce into the analysis the following quantities:
A= [rlupdr
]
du du*
ra(u*T”‘” ar )dr
From Eq. (5) we obtain

o0

04 8B 1
2 T B=0 —ar+2[z=70fr2|ul"dr

and from this the inequality
A< L2+ B0)t+ 4(0) (3.2)

In a medium without nonlinearity, where q=0, the integral J, is always positive. In a nonlinear me-
dium there may be u(r, t) distributions for which J,<0. We will prove that the development of such distribu-
tions will, after a finite time, produce a singularity.

Indeed,
k 2
I, = 0.25¢ <7@—~) 7,

and is also negative when J,<0. Affer a finite time, according to (3.2), A should also become negative but,
on the other hand, A is a large positive quantity. This contradiction indicates a breakdown of the solution
to Eq. (2.4) after a finite time, when J,<0.

4. Equation (3.1) was analyzed numerically on the BESM-6 computer at the Computation Center, Siber-
ian Branch, Academy of Sciences of the USSR. The initial condition was defined in terms of a Gauss distri-
bution

u(r, 0) = a, exp (=1 )
and the boundary conditions as
8
= (0,8)=0, u(oo0,t)=0

Equation (3.1) (with a spherical Laplace operator) was approximated by an implicit difference grid
with a variable interval along the radius. The interval at the periphery was made over 1000 times larger
than at the center, and this made it feasible to integrate numerically over a gufficiently large radius r (over
20 times larger than the initial half-width of the distribution). The accuracy of computations was checked
by how closely the invariance of I; and I, was maintained. The trend followed by the amplitude fu (0, t)] for
a,=1 at various values of I, is shown in Fig. 1. As can be seen here, at sufficiently small values of I; a
singularity — a "pull down" — appears after a finite time. As the machine simulated experiment indicates,

a negative I, is not a necessary condition for a pull-down — it occurs already when I, <0.675. A typical pat-
tern— an appearance of the singularity — is shown in Fig. 2 (for }=4). Evidently, the singularity envelops
a region of rather small radii.
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It was actually possible to observe a pull-down with |u (0, t)| up to approximately 6.3. After that, be-
cause of the high gradients near the axig, the integral of motion I, broke down. However, integral I; at that
instant and during the subsequent period of time remained unchanged withinAT,/T;~ 107°. Thus, one may con-
clude that further computations will be incorrect near the singularity only, and one may reliably continue to
follow the evolution of the remainder of the profile.

At t—t, there appears a "ripple" across the entire profile, which may be interpreted as the appear-
ance of waves propagating {rom the central region. These waves carry away the positive value of integral I;
near the singularity, the intensity of I, tends toward —e.

The steady-state solutions of Eq. () in the form u=eit/2<p (r) were also obtained numerically. Here

1 9 ]
2l o3 =0, ¢, (0)=0, ¢(x)=0 @.1)
Equation (4.1) has an infinite number of solutions; graphs of the first three are shown in Fig. 3. The

amplitudes of ¢ (0) and the values of integral I, for the first set of modes are

1 2 3 4 5 6 7
Q0 4.34 14,06 28,68  46.87  65.45 §1.38 94.39
J1 1.50 9.47  28.72 64.09 124.02 205.68 324.18

After multiplying Eq. (.1) by r’¢ and integrating over r from 0 to «, we have

o

— 3." r2p,2dr — S r2pidr - 3? r2ptdr =0
0 )

0
After multiplying further by rg(prand integrating, we have

0

1 { 22 3 7 22 3 7 2 g
———2—5 rzprdr—TSrwdr+Tjr pdr =0
0 0 0
From here

I, = 5 r2p,2dr — % ‘S‘ r2ipidr = S r2p¥dr=1,>0

0 0 0

The integral I, is positive and equal to I, for all steady-state solutions. This result has been con-
firmed by very precise computations (5-7 digits) and it proves further that the analysis is correct.

The stability of the first steady-state mode was also analyzed numerically by introducing a Gauss per-
turbation into the amplitude, adding thus a relative increment6I,/I;~ 1072 to the integral. The steady-state
mode dissipated, whether the increment was negative or positive.

The graph in Fig. 4 shows how the magnitude of the amplitude varies with time at r=0.

5. The breakdown of a wave can be interpreted physically as follows. At (" =0 a wave beam com-
prises an aggregate of infinitely thin transverse "layers" not interacting with one another. In every layer
there develops a transverse instability splitting it into regions whose dimensions are of the order

1 ( Vy
h~—+ (k | 1; B )

In the case of axial symmetry these regions have the shape of annular zones. The regions of rising
intensity collapse and form foci; as the pulse shape varies continuously, the foci travel along the z axis (see
[11]). The amplitude of field intensity at a focus is limited either by multiphoton absorption or by nonlinear-
ity saturation.

At a finite value of wi" >0 there occurs interaction between the layers, which results in a redistribu-
tion of energy among them. During the first stage, this interaction produces an increasing longitudinal mod-
ulation by the characteristic dimension l" ~1, (kwk"/V*)i/Z.

At the same time there develops a transverse instability in the dimension , and, in this way, the wave
splits into three-dimensional clusters. After a finite time, inside every such cluster there builds up an am-
plitude singularity of the wave; the region near such a singularity radiates a wide frequency and phase spec-
trum. The concurrent intense longitudinal modulation of the wave explains the widening of the spectrum.
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In the absence of any dissipation mechanisms, the buildup of a singularity continues until its dimen-
sion becomes comparable to the wavelength. At that time the spectral line widens most: Aw~ w. In other
cases the buildup of a singularity is limited by nonlinearity saturation, by multiquantum absorption, or by
the finite relaxation time 7* of the medium. In the latter case, the line widens by Aw~ 1/7* only. When the
relaxation time is sufficiently long,

SRR Y T
V> \TTer o \ B, JEF TV,
The pattern of wave breakdown becomes completely "smudged™ when the nonlinearity relaxes. We
note here that not the entire nonlinearity mechanism need be inertia-free to make it possible for a wave to

break down, and that a nonlinearity mechanism with inertia — if present — will produce a wave guide withthe
wave breaking down inside.

The condition J4<0, which is sufficient for the breakdown of a wave, expresses the requirement that
the amplitude and the phase of a wave must not change too much within the dimensions 7} and 7. This also
means that the intensity of a wave beam must be much higher than critical and the period must be much
longer thanl|/V«. These requirements are easily met in experiments witk laser pulses in nonlinear diel-
ectrics.

Inasmuch as the generated singularities are integrable, only small quantities of the wave energy are
"trapped" in them. Nevertheless, the buildup of a longitudinal-transverse instability results in an intensive
nturbulization of the originally monochromatic wave. The characteristic scale dimensions of turbulence
are [ in the transverse direction and !y in the longitudinal direction. The turbulence is strong because
within these dimensionsthe linearterms of Eq. (2.1) are of the same order of magnitude as the nonlinear
ones. Turbulization of a wave occurs over the distance I*~ V, /qlyo|. If a plane-parallel wave beam is in-
jected into the medium, it will transform into a "turbulent jet" along the distance I~ ]* with a divergence

angle 6~ (@ol2/ewi/2
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